
Breaking the Walls: Scene Partitioning and Portal Creation

Alon Lerner
Tel-Aviv University
alan@post.tau.ac.il

Yiorgos Chrysanthou
University Of Cyprus
yiorgos@ucy.ac.cy

Daniel Cohen-Or
Tel-Aviv University

dcor@tau.ac.il

Abstract

In this paper we revisit the cells-and-portals visibility
methods, originally developed for the special case of archi-
tectural interiors. We define an effectiveness measure for
a cells-and-portals partition, and introduce a two-pass al-
gorithm that computes a cells-and-portals partition. The
algorithm uses a simple heuristic that creates short portals
as a mean for generating an effective partition. The input
to the algorithm is a set of half edges in 2D, that can be ex-
tracted from a complex polygonal model. The first pass of
the algorithm creates an initial partition, which is then re-
fined by the second pass. We show that our method creates a
partition that is more effective than the common BSP parti-
tion, even when the latter is further refined with the applica-
tion of our second pass. Our cells-and-portals algorithm is
designed to deal with arbitrarily oriented walls. The algo-
rithm also supports outdoor scenes, where the vertical walls
of the buildings serve as occluders and portals are extended
above the buildings. We show that the extended portals al-
low an output-sensitive rendering of large urban scenes.
Finally, since our two-pass method is fully automatic and
local, it supports incremental changes of the model by lo-
cally recomputing and updating the partition. We call our
method “Breaking the Walls” (BW) since it breaks out of in-
door scenes to outdoor scenes, and allows walls to be bro-
ken interactively, with an instant updating of the partition.

1 Introduction

In this paper we revisit visibility methods developed for
the special case of architectural interiors. These methods
were designed to exploit the prominent characteristics of
architectural indoor scenes, namely, the natural partition of
the scene into cells, typically rooms, and that visibility oc-
curs through openings such as doors or windows, which are
called portals, in this context.

In architectural interior models, visibility is limited to
the immediate surroundings, while only a small fraction of
remote geometry can be seen, if at all. The partitioning of

Figure 1. Bsp partition (left) vs. BW partition
(right). The buildings are in white.

the scene intocells-and-portalsis today the state of the art
in speeding up visibility calculations in the game industry.

One of the limitations of the cells-and-portals concept is
its automatic creation. To our knowledge, there is no au-
tomatic method for creating an effective partition, even for
axis aligned models. A common practice is to let the artist
define it manually. This is, of course, tedious work based
solely on user intuition. In the game industry, manual parti-
tioning may require relatively little effort in the level-design
process, however, efficient automatic partitioning not only
saves design work, but also optimizes runtime rendering
speed, that saves precious computational resources for other
tasks. Moreover, a local automatic partitioning algorithm
allows to change the model dynamically and to recalculate
the partition only for the area surrounding the change, there-
fore allowing more complex games, for example.

In a cells-and-portals partition, only the geometry within
(partially) visible cells is sent to the graphics pipeline for
rendering. The traversal of the visible cells incurs only a
small overhead of testing the visibility of their portals. This
test is extremely fast and consists of only a few simple geo-
metric operations [10]. Nevertheless, it remains a challenge
to compute an effective cells-and-portals partition.

For outdoor scenes, hierarchical space partitioning data-
structures are commonly used. Their traversal necessarily
imposes the overhead of testing the visibility of the upper
levels of the hierarchy before reaching the visible cells at
the leaves. These visibility tests are significantly more ex-



pensive than portal visibility tests, even when realized in
hardware. Furthermore, as the size of the model grows, the
path to the visible cells in the hierarchy also grows (even if
logarithmically). As far as we know, cells-and-portals have
not been used for outdoor scenes, and as we will show the
method can be used for an outdoor scene provided that an
effective partitioning can be found for the model.

Automatic cells-and-portals partitions are usually based
on a Binary Space Partitioning (BSP) tree. As we will see
later, this tends to create an excess of inefficient cells. Modi-
fying a BSP partition can affect an extended area, especially
if the modified edges come from high up in the tree [3].

The novel partitioning technique we describe in this pa-
per is fully automatic, and generates an effective partition.
It makes only local computations, therefore it supports on-
line changes in the model. It is based on the heuristic that a
good partition has short portals. The input for the algorithm
is a set of half edges in 2D. The half edges can be obtained
from a model by following the vertical faces that are at the
base of the walls. After we have the partition, we define the
portals as rectangles whose base is on the floor and their top
is on the ceiling. Then, each face of the model is placed in
the appropriate cell.

One of our contributions is an analysis and a quantita-
tive measure for the effectiveness of a partition. Based on
this measure we compare our method with the BSP based
approach (see Figure 1). Our algorithm is designed to
deal with arbitrarily oriented walls and it supports outdoor
scenes, where the vertical walls of the buildings are used
as occluders. To make this applicable, we extend the por-
tals above the buildings to some predefined expected height.
The extended portals allow efficient rendering of large ur-
ban scenes, in the sense that the geometry sent to the graph-
ics pipeline is output sensitive.

We call our cells-and-portals algorithm “Breaking the
Walls”, denoted by BW, since conceptually it breaks the
walls of the indoor scenes and moves on to outdoor scenes.
Moreover, it also allows to break walls interactively in a
walkthrough and quickly update the partition.

In the next section we review related work. In Section 3
we describe our partitioning algorithm, followed by a dis-
cussion on metrics for an effective partition in Section 4.
The extension of the method to outdoor urban scenes is
shown in Section 5. We conclude with some results for vari-
ous indoor and outdoor scenes and a comparison to the BSP
based partitioning in Section 6.

2 Related work

Indoor scenes saw some of the first applications of occlu-
sion culling [1, 7, 13, 14]. In such scenes walls and other
large elements serve as natural occluders while smaller ele-
ments are considered as geometric details. Non-opaquepor-

tals, such as doors and windows, connect adjacentcells, and
together they define anadjacency graphwhere the nodes
are associated with the cells, and the portals are the edges
linking the adjacent connected nodes.

Cells might be able to see through other cells. Any two
cells which have a sightline connecting them, are consid-
ered mutually visible. The geometry of all the visible cells
from a given cell forms its potentially visible set (PVS). The
PVS of each cell is stored and is readily available for ren-
dering during the interactive walkthrough.

Luebke and Georges [10] propose a from-point cells-
and-portals technique. Instead of precomputing the PVS’s,
the visible cells are computed on-the-fly during a recursive
depth first traversal of the adjacency graph. Here the visibil-
ity is computed from a point, and a cell is considered visible
if any of its portals is seen. The visibility tests for the por-
tals are performed by projecting them into screen-space and
testing the visibility of their image-space bounding boxes.
The advantage of computing the visibility on-the-fly is that
it applies a recursive view frustum culling through the se-
quence of portals, and thus the PVS is smaller than that of
a from-cell one. Note that their algorithm does not require
the cells to be convex.

Cells-and-portals techniques assume that the geometry is
hidden and by testing the visibility of the portals, the visible
geometry is detected. Alternatively, generic visibility tech-
niques assume that the geometry is visible and cull regions
which are detected as hidden [4]. Visibility culling tech-
niques usually use a spatial hierarchy to represent the scene.
The hierarchy is traversed top-down aiming at culling large
portions of the scene early on [2, 5, 6, 8, 9, 17]. The traver-
sal of the hierarchy necessarily incurs a logarithmic factor,
which is avoided by the “flat” traversal of the adjacency
graph in cells-and-portals techniques. However, it is far eas-
ier to define a spatial hierarchy than a cells-and-portals par-
tition, in the general case. Even for indoor models, where
the constrained architectural structure leads to a natural par-
tition into cells, it is still not easy to compute an efficient
partition. Typically, the partition is based on a 2D floor plan,
taking advantage of the fact that the vertical walls are effec-
tive occluders. In this paper we show that also for outdoor
urban models, it is possible to create an effective automatic
cells-and-portals partition, assuming that the heights of the
buildings are quite regular (see Section 5).

As mentioned in the introduction, it is desirable for the
cells-and-portals definition to be automatic and scalable to
arbitrary large and complex scenes. However, this is not the
case with current known techniques.

Teller and Sequin [14] generate a partition of the model
into convex cells using a BSP tree. They use as splitting
planes of the tree only planes defined by the walls of the
model. These are chosen in decreasing order of coverage,
so for example if we have a long wall or a collection of



coplanar walls with few gaps between them, then the plane
they define is more likely to be selected early. The leaves
of the final BSP tree are the required convex cells. This,
however, works well only if the walls are axis aligned or
very regularly placed.

Meneveaux et al. [11] define a variation on the BSP cells.
The vertical polygons of the scene are mapped onto points
in a dual space. The points are then separated into clusters
and for each cluster one representative point is chosen. The
chosen point is then mapped back to primal space and is
used as a splitting plane for the BSP. The splitting planes
along with a priori construction rules are used to construct
the cells. The construction rules define the shape of the
cells. For example, most rooms are rectangular, therefore
when applying this construction rule the splitting planes are
be chosen in such a way that they create rectangular cells.

Partitioning with a BSP tree is mainly considered appli-
cable for static scenes. The construction of the tree is an
expensive operation which needs to be done at preprocess-
ing. When one of the splitting planes is moved the tree is
invalidated. There have been solutions proposed in the liter-
ature for allowing dynamic scenes [3, 12, 15], however they
are often too complex to implement [12] and will usually
perform well for a limited range of changes [3, 15].

Another related work is the unique work by Van de
Panne and Stewart [16]. They introduce a method to com-
press the PVS of a partition by merging cells with similar
PVS’s. They deemed an effective partition as one where
cells do not have similar PVS’s and therefore do not com-
press.

3 The BW Algorithm

3.1 Preliminaries

Given a complex polygonal model, we select the verti-
cal polygons, and extract from them the set of half edges
that are given as input to the algorithm. The occlusion of
non-vertical polygons is ignored. For each wall we define
a half edge. The half edges are single-sided oriented edges,
therefore, if both sides of a wall appear in the model, we
define two half edges with opposite normals. Portals are
transparent polygons that connect gaps between walls.

In the rest of the paper, we use the termwalls to refer to
the half edges that are given as input to the algorithm. A
portal is a half edge that is created during the execution of
the algorithm, it is defined as the shortest distance between
two walls. Whenever a portal is created, both its half edges
are created. Byedgeswe refer to half edges which are either
walls or portals. We say that two edges areadjacentif they
share a vertex.

We assume that the walls do not cross each other and
that there are no T-junctions. If such degeneracies exist,

they can be resolved at preprocessing. During the execution
of the algorithm walls might be split into several parts due
to the creation of portals. Portals are not allowed to cross
other edges.

A cell is polygonal region whose boundary is formed by
a sequence of walls and valid portals. A cell is considered
valid if the polygonal region defined by it does not contain
any walls. In our partition, a cell is consideredoptimal, if
it is a valid cell that cannot be split into several valid cells.
The criterion for the validity of portals is defined in 3.4.

After the partition is created, the polygons of the model
are associated with the appropriate cells, and the portals are
redefined as rectangles that start from the floor and end at
the ceiling.

Figure 2. Soda model. (Top) The result of the
first pass of the BW algorithm. (Bottom) The
result of the second pass.



3.2 Overview

Given a set of half edges in the plane, we would like
to add new edges, portals, and decompose the plane into
connected cells. The rationale of our algorithm is to keep
the cells large and avoid over-splitting. We strive to create
cells with a small number of short portals. This is achieved
through a two-pass locally greedy algorithm.

In the first pass we create an initial set of cells. The cells
are created by traversing the walls, choosing the shortest
step possible, until all the walls are classified to cells. At
each step we either move to an adjacent wall, or to a close
wall that creates a short portal. At this stage, we don’t have
any knowledge of the cells shape and size, therefore we can
only base our decisions according to the length of the walls.
Thus, we always create short portals relative to the adjacent
walls.

In the second pass, we go through the cells and refine
them. At this stage we know the size and shape of the cells,
so we can split or merge them, striving to create cells where
the portals are short relative to the cell’s boundary length.

In the following we give a more detailed description of
the two passes, and a description of how to update a parti-
tion when a change occurs in the model.

3.3 The First Pass - Initial Partition

The purpose of this pass is to link together walls and por-
tals to create an initial set of cells. Most of the cells created
in this pass are valid but not necessarily optimal (Figure 2
top).

The BW algorithm starts from an arbitrary wall and con-
structs a path by traversing the walls, in a counter-clockwise
direction, adding at each step an adjacent edge (wall or por-
tal) or creating the shortest possible portal by moving to the
closest disjoint wall. Whenever the path closes up on it-
self, a cell is created, where the edges of the loop define its
boundary. We continue the traversal from the end of the re-
maining path. If the remaining path is empty then we select
a new seed. The above procedure is repeated until all walls
have been used and classified to cells.

The core of the algorithm is the selection of the next
wall in the traversal. Let us denote byΓ the current wall
on which the algorithm is operating. First we examine the
edges which are adjacent toΓ on its right endpoint. From
these we select the edge that has the smallest internal angle
with Γ (any other would lead to an invalid cell) and call it
Γadj . Note thatΓadj could be either a wall or a portal which
was defined when a neighboring cell was created.

Γadj is not necessarily our best option at this stage. It
may be possible to define a new portal,∆, betweenΓ and
the closest disjoint wall,Γcls, such that∆ is shorter than
Γadj and it is located in the sub-space defined by the sup-

(a) (b) (c)

Figure 3. (a) Starting from the red edge, we
follow the green path until it closes upon itself
and creates the green cell in (b). Continuing
from the blue edge, we follow the green path
to create the blue cell in (c). Finally the red
cell is created.

porting lines ofΓ andΓadj . Note that if∆ lies outside the
aforementioned sub-space, then the cell, that will eventually
be created by this path, will not be a valid one.

If Γadj is shorter than∆, it is chosen as the next edge,
otherwiseΓcls is chosen and∆ is created. Note that ifΓadj

is chosen and it is a portal, we move to its adjacent wall on
its right endpoint. An example of a first pass traversal is
shown in Figure 3.

Occasionally, during the above process, a cell that en-
closes other geometry within it might be created, which of
course is not allowed. Most likely, this is resolved when we
traverse the enclosed geometry. As we follow the internal
walls a portal may link them to the boundary of the sur-
rounding cell. We then break up that cell, add its boundary
to the current path, and continue with the traversal (Figure
4(a)). However, we may have a case such as that of Figure
4(b), where the enclosed geometry closes the loop on itself
and fails to connect with its surroundings. We deal with
these cases separately at the end of the first pass, by con-
necting them to their surrounding cells using the shortest
portal between the two.

3.4 The Second Pass - Refinement

During the first part of the algorithm we created an ini-
tial partition of the model. Not all of the portals that were
created are valid portals. We define a portal asvalid if the
ratio between its length and the length of the boundary of
its cell is less than a predefined valueα.

A cell is defined as underestimated if it contains an in-
valid portal (see Figure 5(a)). Underestimated cells are
merged with the cell on the opposite side of the invalid por-
tal.

A cell is defined as overestimated if it can be split, with
a valid portal, into two valid cells (see Figure 5(a)). A split
can occur only at a right turn, that is, where two consecutive
edges have an internal angle greater than180o. We traverse



(a) (b)

Figure 4. Enclosed geometry, (a) Connects to
the surrounding cell through a portal (dashed
red). Traversal continues with the green path.
(b) Forms an isolated cell. After the first pass,
we connect it to the surrounding cell using
the shortest portal that can be created be-
tween them.

the walls of the cell counter-clockwise and for each right
turn we define the shortest valid portal emanating from one
of the edges defining the turn. This defines a set of poten-
tial splitting portals for the given cell. We pick the shortest
portal in the set, and split the cell accordingly. The two
new cells may be split further. Note that an optimal cell
has an empty potential splitting portal set, while an over-
estimated cell has at least one potential splitting portal (see
Figure 5(b)). To detect the overestimated cells, we visit all
the cells, and for each one, test whether a new valid portal
can split it.

The second pass starts by splitting overestimated cells
and then merging underestimated cells. The resulting par-
tition consists of optimal cells requiring no further splits or
merges (see Figure 2 bottom and Figure 5(c)).

3.5 Breaking walls

Sometimes we would like to change parts of the model
without recomputing the entire partition. Since the algo-
rithm is local, we can make local changes and get an up-
dated valid partition, see Figure 6.

Adding or removing walls requires that we remove the
cells surrounding these walls from the current partition and
add their edges to a list of unclassified edges. Portals which
connect two removed cells are deleted. If new walls are
inserted into the scene, they are added to the list of unclas-
sified edges. If walls are removed, their edges are removed
from the list. Now, the BW algorithm creates a new par-
tition for the unclassified edge list as before, and the new
cells are inserted into the partition.

All the cells in the current partition, including the newly
created ones, adhere to the definition of optimal cells in the
BW algorithm. Therefore, the entire partition is a valid par-
tition.

(a)

(b) (c)

Figure 5. A small region of the London model.
(a) The green cell is an overestimated cell.
Brown cells, shown in closeup, are underesti-
mated cells. Purple cells are optimal cells. (b)
Red portals are valid splitting portals, while
blue are invalid. (c) The final partition.

Figure 6. Removing the blue building. (a) The
building and its immediate neighboring cells.
(b) The partition after the buildings removal.
This operation took less than 1 msec.

4 Effective Partition

A central question is: what is an effective partition, and
in particular, what is an effective cells-and-portals partition?
There are two aspects to be considered: time and space.
Before we analyze the effectiveness, we should distinguish



between two applications of cells-and-portals. In the first,
the PVS of each cell is precomputed and stored, so that it
is readily available during the walkthrough [14]. In the
second, the PVS is determined on-the-fly during the walk-
through [10]. The criteria are different in these two cases.
The first is storage intensive [16], while the latter is com-
putation intensive. Here we are interested only in the latter
case, where the storage requirement is merely the adjacency
graph. However, for this to be effective, the run-time com-
putation needs to be optimized.

The runtime per-frame cost consists of two interdepen-
dent parts: the rendering time, which is directly dependent
on the size of the PVS, and the time required to compute
the current PVS. There should be a balance between the ef-
fort needed to compute a tighter PVS versus the time saved
by not rendering hidden geometry. For example, if a par-
tition consists of many tiny cells, the PVS will most likely
be smaller than that of a partition which consists of a few
large cells, but then it will require more time to classify the
visible portals for a given viewpoint.

The following equation gives us a concrete measure for
the effectiveness of a partition. Assuming that objects are
distributed evenly in the scene, we can compute the runtime
cost of using the partition for rendering from a pointp as
follows:

Cp =
∑

i

(W1 ∗ Ai + W2 ∗ Pi ∗ Ki),

with i ranging over all the visited cells,Ai the area of cell
i, Pi the number of portals in celli andKi the number of
times the cell was encountered during the rendering from
the current viewpoint. The weightsW1 andW2 are two pos-
itive constants that formulate the relative cost of rendering
the cells and testing the visibility of the portals respectively.
The weightW1 depends on the performance of the graphics
card, andW2 depends on the computational power of the
CPU.

Basically, we want our partition to minimize the average
cost of rendering from a point including the portal visibility
tests. Since this measure cannot be evaluated analytically,
we approximate it by sampling the visibility from a large
number of viewpoints within the cells of a given partition.
In each sample we count the running time and the number of
portals tested. Based on many samples we can approximate
the relative values ofW1 andW2.

5 Going Outdoors

Cells-and-portals are extended to outdoor scenes by cre-
ating extended portalsas depicted in Figure 7. We define
a height,Hc, which we consider to be the ceiling.Hc is
set such that the highest point of most buildings is below
Hc. Buildings that end aboveHc are clipped toHc. The

parts aboveHc are considered to be non-occluding. Short
buildings are also considered to be non-occluding.

Figure 7. Part of the Vienna model. The por-
tals are extended up to Hc. The green portals
start from the ground, while the red portals
start from the roofs of the buildings.

We create two separate partitions that are then merged
and used as one. The first partition is aground-levelparti-
tion. This is a cells-and-portals partition of the empty space
between the buildings. In this partition each portal is a ver-
tical rectangle emanating from the bottom of the building
up to theHc. The second partition is aroof-top partition.
This means that the roofs of the buildings are partitioned
into cell-and-portals (see Figure 13). In this partition for
each edge, wall or portal, we create an extended portal from
the top of the building toHc (see Figure 7). We connect
the two partitions by adding the extended portals created on
top of the buildings to the appropriate cells of the ground
partition.

The geometry aboveHc defines a separate geometry
scene which is rendered separately. However, this geom-
etry is usually occluded as it is mostly above the elevated
view frustum defined aboveHc.

We extract the half edges given to the algorithm, for the
creation of the cells-and-portals partitions, from the vertical
walls of the buildings. For each wall we extract two half
edges, one facing the street, which has the same normal as
the wall, the other facing the into the building, which has the
normal in the opposite direction. The half-edges facing the
street are used to create the ground-level partition, while the
half-edges facing the buildings are used to create the roof-
top partition.

The effectiveness of a cells-and-portals technique for
outdoor scenes depends on the characteristics of the scene.
As discussed above, to be effective, portals must be small.
The portals emanating from the ground toHc were already
in the partition in the 2D case. The portals that emanate
from the tops of buildings are the extra cost of going out-



doors. If the height of most of the buildings is close toHc

then the cost is fairly small: the extra portals defined above
the buildings are rather small, and there is little geometry
aboveHc. On the other hand, if the scene exhibits a large
variety of buildings, then large portals are defined above
short buildings, and high buildings add a lot of geometry
aboveHc. We need to define the heightHc so that unusu-
ally high buildings do not extend the portals too much and
thus make the portals ineffective. Note that in typical large
cities, like London or Vienna, most of the buildings have
about the same height (see Figure 8). If there are regions in
the model that have higher buildings than others, then one
can defineHc regionally.

Figure 8. Part of the London model. Typically,
in large cities buildings have about the same
height.

To combine indoor and outdoor models, one needs to
create a partition for the indoor model and another partition
for the outdoor model and then combine the two resulting
adjacency graphs into one.

6 Results and Discussion

We implemented the BW algorithm and integrated it
into a cells-and-portals culling mechanism for an interac-
tive walkthrough system. To test and evaluate the perfor-
mance of our algorithm, we used four different models: A
region of a model of London, the indoor Soda model, the
sparse outdoor Sava model, and the Vienna 2000 model.
The layouts and cell-and-portals partitions of the London
model and the Vienna model can be seen in Figures 12 and
13. A straightforward BSP partition yields a very poor par-
tition (Figure 9(a)), therefore we applied the second pass of
our algorithm on the initial BSP partition (Figure 9(b)). Fol-
lowing the discussion in Section 4 the effectiveness of the
partition for rendering is evaluated by measuring the aver-
age number of portals tested, and the average area rendered
from an arbitrary point. Table 1 shows the effectiveness of
the partition in comparison with a post-merge BSP partition

for three of the models. For the London model, the BW par-
tition clearly outperforms the post-merge BSP partition as it
has an average of about six time less portals, and it renders
less area (72.551 vs. 107.986). Interestingly enough, the
post-merge BSP has less cells than the BW partition. This
emphasizes the fact that the effectiveness of the partition is
not a function of the number of cells. As shown in Table 1,
the experiment with the Sava model yields similar results.
The Soda model has different characteristics as it is an in-
door model with axis-aligned walls. The results show that
the BSP partition does not gain much from the simplicity
of the model and the BW algorithm still yields a better par-
tition. As can be seen in Table 1, the average number of
visible cells in the merged BSP partition, is about the same
as in the BW partition, while the number of tested portals is
several times higher. The reason is that at creation, the BSP
splitting planes split the portals as well as the cells. Result-
ing in cells that have on the boundary a sequence of portal
segments. While keeping these portals is clearly redundant,
it is not clear how it can be avoided.

(a) (b)

Figure 9. A region of the London model. (a)
BSP partition. (b) BW second pass applied to
the BSP cells.

The running time of the BW algorithm depends on the
size of the model. On a P4-2Ghz computer it takes the al-
gorithm a fraction of a second to calculate the partition (in-
cluding the adjacency graph) for the Soda and Sava mod-
els. The London model is partitioned in less than thirty
seconds while the Vienna model is partitioned in about ten
minutes. As discussed in Section 3.5, small modifications
to the model require only a local computation. Modifying
and updating the partition in the Sava model, for example,
takes less than a millisecond. Similar results are expected
for the other models since the complexity depends only on
the local neighborhood.

Our method has the free parameterα that defines the ra-
tio between a valid portal and the circumference of its sur-
rounding cell (see Section 3.4). Table 2 shows the average
number of portals tested, cells visible and area rendered, as
a function ofα. As α increases, the number of visible cells



Model Method avg. num avg. num avg. area
visible portals rendered
cells tested

Soda BW 8 25 106.247
Merged BSP 12 85 116.739

London BW 25 83 72.551
Merged BSP 28 609 107.986

Sava BW 18 62 956.454
Merged BSP 23 372 1959.15

Table 1. The average number of visible cells,
portals tested and area rendered by the BW
and the post-merge BSP partitions.

α portals area cells

10 181 228.082 11
20 91 111.874 16
30 81 76.167 22
40 100 69.480 34
50 145 72.330 54

Table 2. The average number of visible cells,
portals tested and area rendered by BW as
a function of α, the ratio defined for a valid
portal. These results are computed for the
London model.

increases and the average area rendered decreases. How-
ever, the number of portals gets a minimum around a ratio
of 33%. The effectiveness expression discussed in Section
4 is a function of the average area rendered and the average
number of portals tested. Thus, by varyingα one can adjust
the tradeoff between the rendering of the scene and the por-
tal tests. If the scene is overly loaded with geometry it pays
off to test more portals and save on the area. On the other
hand, if the graphics card is strong enough, one can save
portal tests and render a large area. Thus, our BW partition
is adjustable to the complexity of the scene and the graphics
capability available.

Although the resulting partition is an effective partition
and all the cells adhere to the definition of BW optimal cells,
some cells may seem less than perfect. In the Soda model,
upon close inspection, a single ”bad“ looking cell appears
(see Figure 10). This cell does not seem like a good cell and
under no circumstances would anyone create such a cell in
a manual partition. This cell is created as a result of mis-
alignments of nearby walls. Nevertheless, the existence of
a small number of such cells doesn’t cause a significant de-
crease in the effectiveness of the partition since they do not
increase the number of portals.

Note that above we did not report on the average render-

Figure 10. Upon close inspection a seemingly
”bad“ cell appears.

Figure 11. The Sava model walkthrough. The
model is populated with 50,000 people.

ing time, but rather on the average area rendered. The area
is a good measure of the potential rendering time assuming
the geometry load is evenly distributed. The actual time re-
quired to render empty cells surrounded by walls is usually
too small to show the significance of an output-sensitive al-
gorithm. Thus, in one of our experiments, we have loaded
the streets of the Sava model with a large number of hu-
mans (see Figure 11). Here, efficient visibility culling is
necessary. In our walkthrough system, we use a field-of-
view of 45 degree, which means that inherently the output-
sensitive PVS is significantly smaller than the one generated
by an “all-around” pre-computed from-cell PVS. The asso-
ciated cost of portal tests is linear inn, the number of visible
cells (or portals). This is in contrast to thelog(n) factor that
is associated with any hierarchical culling method. More-
over, the portal test itself is simple, inexpensive and realized
in software, in contrast to hardware-accelerated visibility
culling methods, where the hardware-based visibility tests
have to be performed sequentially on the nodes, and thus
constantly stalling the graphics pipeline.



(a) (b)

Figure 12. (a) A region of the London model. (b) The result of the BW partition. The average visible
area and portals is 72.551 and and 83, respectively.

(a) (b)

Figure 13. (a) The Vienna model. (b) The result of the BW partition. White buildings are buildings
above the a 95% Hc threshold. In brown is the roof-top partition.



7 Conclusions

In this paper we presented an algorithm to create an ef-
fective cells-and-portals partition. We applied the technique
on outdoor scenes using extended portals. This work shows
that cells-and-portals is an efficient technique in the sense
that is it output sensitive. It avoids the log factor associ-
ated with hierarchical visibility techniques and the portal
tests do not incur a costly overhead. However, cells-and-
portals cannot be applied on arbitrary scenes. It is appli-
cable to scenes which can be subdivided into cells that are
defined by simple occluders. As we showed here, for ar-
chitectural models, whether indoors or outdoors, this is ap-
plicable. Extending the technique to general scenes is a
worthwhile challenge, since it will benefit from the inher-
ent advantages, mentioned above, of the cells-and-portals
technique.

Acknowledgements

This research is supported in part by the EU funded
project CREATE IST-2001-34231), and by the Israel Sci-
ence Foundation founded by the Israel Academy of Sci-
ences and Humanities, and by the Israeli Ministry of Sci-
ence, and by a grant from the German Israel Foundation
(GIF). We would like to thank Anthony Steed for the Lon-
don Model and FT CL for the crowd rendering. We would
also like to thank Peter Wonka and Michael Wimmer for the
Vienna 2000 model.

References

[1] J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr. Towards im-
age realism with interactive update rates in complex virtual
building environments.Computer Graphics (1990 Sympo-
sium on Interactive 3D Graphics), 24(2):41–50, Mar. 1990.

[2] J. Bittner, V. Havran, and P. Slavik. Hierarchical visibility
culling with occlusion trees. InProceedings of Computer
Graphics International ’98, pages 207–219, June 1998.

[3] Y. Chrysanthou. Shadow Computation for 3D Interaction
and Animation. PhD thesis, Queen Mary and Westfield Col-
lege, University of London, Feb. 1996.

[4] D. Cohen-Or, Y. Chrysanthou, C. Silva, and F. Durand.
A survey of visibility for walkthrough applications.IEEE
Transactions on Visualization and Computer Graphics, in
press.

[5] S. Coorg and S. Teller. Temporally coherent conserva-
tive visibility. In Proc. 12th Annu. ACM Sympos. Comput.
Geom., pages 78–87, 1996.

[6] F. Durand, G. Drettakis, J. Thollot, and C. Puech. Con-
servative visibility preprocessing using extended projec-
tions. Proceedings of SIGGRAPH 2000, pages 239–248,
July 2000.

[7] T. A. Funkhouser, C. H. Śequin, and S. J. Teller. Manage-
ment of large amounts of data in interactive building walk-
throughs. 1992 Symposium on Interactive 3D Graphics,
25(2):11–20, March 1992.

[8] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer
visibility. Proceedings of SIGGRAPH 93, pages 231–240,
1993.

[9] V. Koltun, Y. Chrysanthou, and D. Cohen-Or. Hardware-
accelerated from-region visibility using a dual ray space. In
Rendering Techniques 2001: 12th Eurographics Workshop
on Rendering, pages 205–216. Eurographics, June 2001.

[10] D. Luebke and C. Georges. Portals and mirrors: Simple,
fast evaluation of potentially visible sets. In P. Hanrahan
and J. Winget, editors,1995 Symposium on Interactive 3D
Graphics, pages 105–106. ACM SIGGRAPH, Apr. 1995.

[11] D. Meneveaux, K. Bouatouch, E. Maisel, and R. Del-
mont. A new partioning method for architectural environ-
ments. The Journal of Visualization and Computer Anima-
tion, 9(4):195–213, 1998.

[12] B. F. Naylor. Interactive solid geometry via partioning trees.
In Proc. of the Graphics Interface ’92, pages 11–18, Van-
couver, Canada, 1992.

[13] S. Teller. Visibility Computations in Densely Occluded En-
vironments. PhD thesis, University of California, Berkeley,
1992.

[14] S. J. Teller and C. H. Sequin. Visibility preprocessing for
interactive walkthroughs.Computer Graphics (Proceedings
of SIGGRAPH 91), 25(4):61–69, July 1991.

[15] E. Torres. Optimization of the binary space partition algo-
rithm (BSP) for visualization of dynamic scenes. 9(3):507–
518, 1990. C.E. Vandoni and D.A. Duce (eds.), Elsevier
Science Publishers B.V. North-Holland.

[16] M. van de Panne and A. J. Stewart. Effective compres-
sion techniques for precomputed visibility. InEurographics
Workshop on Rendering, pages 305–316, June 1999.

[17] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff III. Visi-
bility culling using hierarchical occlusion maps. In T. Whit-
ted, editor,SIGGRAPH 97 Conference Proceedings, Annual
Conference Series, pages 77–88. ACM SIGGRAPH, Addi-
son Wesley, Aug. 1997.


